Changes in ventral respiratory column GABAaR ε- and δ-subunits during hibernation mediate resistance to depression by EtOH and pentobarbital.
نویسندگان
چکیده
During hibernation in the 13-lined ground squirrel, Ictidomys tridecemlineatus, the cerebral cortex is electrically silent, yet the brainstem continues to regulate cardiorespiratory function. Previous work showed that neurons in slices through the medullary ventral respiratory column (VRC) but not the cortex are insensitive to high doses of pentobarbital during hibernation, leading to the hypothesis that GABA(A) receptors (GABA(A)R) in the VRC undergo a seasonal modification in subunit composition. To test whether alteration of GABA(A)R subunits are responsible for hibernation-associated pentobarbital insensitivity, we examined an array of subunits using RT-PCR and Western blots and identified changes in ε- and δ-subunits in the medulla but not the cortex. Using immunohistochemistry, we confirmed that during hibernation, the expression of ε-subunit-containing GABA(A)Rs nearly doubles in the VRC. We also identified a population of δ-subunit-containing GABA(A)Rs adjacent to the VRC that were differentially expressed during hibernation. As δ-subunit-containing GABA(A)Rs are particularly sensitive to ethanol (EtOH), multichannel electrodes were inserted in slices of medulla and cortex from hibernating squirrels and EtOH was applied. EtOH, which normally inhibits neuronal activity, excited VRC but not cortical neurons during hibernation. This excitation was prevented by bicuculline pretreatment, indicating the involvement of GABA(A)Rs. We propose that neuronal activity in the VRC during hibernation is unaffected by pentobarbital due to upregulation of ε-subunit-containing GABA(A)Rs on VRC neurons. Synaptic input from adjacent inhibitory interneurons that express δ-subunit-containing GABA(A)Rs is responsible for the excitatory effects of EtOH on VRC neurons during hibernation.
منابع مشابه
Neurons in Brainstem Insensitive to Etoh, Pentobarbital 1
During hibernation in the 13-lined ground squirrel, Ictidomys tridecemlineatus, the cerebral cortex is electrically silent, yet the brainstem continues to regulate cardiorespiratory function. Previous work showed that neurons in slices through the medullary ventral respiratory column (VRC) but not the cortex, are insensitive to high doses of pentobarbital during hibernation, leading to the hypo...
متن کاملα2 Subunit-Containing GABAA Receptor Subtypes Are Upregulated and Contribute to Alcohol-Induced Functional Plasticity in the Rat Hippocampus.
Alcohol (EtOH) intoxication causes changes in the rodent brain γ-aminobutyric acid receptor (GABAAR) subunit composition and function, playing a crucial role in EtOH withdrawal symptoms and dependence. Building evidence indicates that withdrawal from acute EtOH and chronic intermittent EtOH (CIE) results in decreased EtOH-enhanced GABAAR δ subunit-containing extrasynaptic and EtOH-insensitive α...
متن کاملIncreased GABAA Receptor ε-Subunit Expression on Ventral Respiratory Column Neurons Protects Breathing during Pregnancy
GABAergic signaling is essential for proper respiratory function. Potentiation of this signaling with allosteric modulators such as anesthetics, barbiturates, and neurosteroids can lead to respiratory arrest. Paradoxically, pregnant animals continue to breathe normally despite nearly 100-fold increases in circulating neurosteroids. ε subunit-containing GABA(A)Rs are insensitive to positive allo...
متن کاملAssembly and Heterogeneity of GABAA Receptors
The vast majority of inhibitory neurotransmission in the brain is mediated by γ-aminobutyric acid (GABA). It has been detected in approximately 30% of all synapses and acts via ionotropic GABAA receptors, which mediate fast inhibitory neurotransmission, and metabotropic GABAB receptors, which mediate slower inhibitory effects. GABAA receptors (GABAARs) are chloride channels belonging to the Cys...
متن کاملFunctional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings
The numerous γ-aminobutyric acid type A receptor (GABAAR) subtypes are differentially expressed and mediate distinct functions at neuronal level. In this study we have investigated GABAAR-mediated modulation of the spontaneous activity patterns of primary neuronal networks from murine frontal cortex by characterizing the effects induced by a wide selection of pharmacological tools at a plethora...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 300 2 شماره
صفحات -
تاریخ انتشار 2011